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Abstract—Breast cancer is the most common cancer in women
worldwide. The most common screening technology is mam-
mography. To reduce the cost and workload of radiologists, we
propose a computer aided detection approach for classifying and
localizing calcifications and masses in mammogram images. To
improve on conventional approaches, we apply deep convolutional
neural networks (CNN) for automatic feature learning and
classifier building. In computer-aided mammography, deep CNN
classifiers cannot be trained directly on full mammogram images
because of the loss of image details from resizing at input
layers. Instead, our classifiers are trained on labelled image
patches and then adapted to work on full mammogram images
for localizing the abnormalities. State-of-the-art deep convo-
lutional neural networks are compared on their performance
of classifying the abnormalities. Experimental results indicate
that VGGNet receives the best overall accuracy at 92.53% in
classifications. For localizing abnormalities, ResNet is selected
for computing class activation maps because it is ready to be
deployed without structural change or further training. Our
approach demonstrates that deep convolutional neural network
classifiers have remarkable localization capabilities despite no
supervision on the location of abnormalities is provided.

Index Terms—computer aided analysis, computer aided di-
agnosis, mammography, medical diagnostic imaging, feature
extraction, neural networks, image classification

I. INTRODUCTION

According to World Health Organization (WHO), breast
cancer is the most common cancer in women both in the
developed and the developing world [1]. Moreover, there is an
increasing incidence of breast cancer in the developing world
because of the increase in life expectancy, urbanization and
adoption of western lifestyles. Although some risk reduction
can be achieved with prevention, early detection for improving
breast cancer outcome and survival remains the cornerstone of
breast cancer control [1].

Mammography is the most common breast screening tech-
nology. There are several imaging techniques for examining
the breast, including ultrasound, magnetic resonance imaging
(MRI), X-ray imaging and emerging technologies such as
molecular breast imaging and digital breast tomosynthesis
(DBT). Mammography is a type of imaging that uses a low-
dose X-ray system to examine the breast and is the most
reliable method for screening breast abnormalities [28] before
they become clinically palpable.

There are two types of examinations in mammography:
screening and diagnostic. Screening mammography is for
detecting breast cancer in an asymptomatic population while
diagnostic mammography is a follow-up exam on patients who
have already demonstrated abnormal clinical findings [28].
Screening mammography generally consists of four views,
with two views of each breast: the craniocaudal (CC) view and
the mediolateral oblique (MLO) view. Besides the two views,
additional diagnostic mammography may offer in-depth look
at suspicious areas.

One of the challenges in mammography is low contrast in
mammogram images. This poses difficulties for radiologists
to interpret results. Double reading of mammograms has been
advocated to lower the rate of false positives and negatives
[30]; however, the cost and workload associated with double
reading are high. Therefore, computer aided detection (CADe)
and computer aided diagnosis (CADx) of abnormalities in
mammography have been introduced. While CADx has not
been approved for clinical use, CADe is playing an increas-
ingly important role in breast cancer screening [28] [15].

Computer aided detection is a pattern recognition process
that aids radiologists in detecting potential abnormalities such
as calcifications, masses, and architectural distortions [6]. It
identifies suspicious features in the radiology images and
brings them to the attention of radiologists [6]. In its current
use, the radiologists first review the exam, activates the CAD
software and then re-evaluates the CAD-marked areas of
concern before writing the report [6].

Because of the medical significance of screening breast
cancer, there has been considerable effort on developing CAD
approaches for detecting abnormalities, including calcifica-
tions, masses, architectural distortion and bilateral asymmetry
[28] [15] [11] [32]. Traditional CAD approaches rely on
manually designed image features [28] [15] in detecting subtle
yet crucial abnormalities in mammograms. In general, the
detection of calcifications followed the procedure of image
enhancement, stochastic modelling, frequency decomposition
and machine learning; the detection of masses have relied on
pixel-based and region-based approaches [28].

Recent advances in deep neural networks have enabled
automatic feature learning from large amount of training data,
providing an end-to-end solution from feature extraction to
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classifier building [13] [26] [27] [9]. Moreover, this learning
scheme is robust to dataset noise, making it suitable for
detecting abnormalities in mammography.

In this work, we present an abnormality detection approach
using deep Convolutional Neural Networks (CNN). Using
transfer learning [31], we fine tune pre-trained deep CNNs
on cropped image patches of calcifications and masses. After
feeding a full mammogram image to input of the CNN tuned
on patch images, we compute Class Activation Maps (CAM)
for localizing abnormalities [9].

Our contributions are three-fold:
• Significantly leveraged deep CNNs’ hierarchical feature

extraction capabilities through transfer learning. This
enables automatic extraction of features for classifying
and localizing calcification and mass in mammograms.

• Compared the performance of state-of-the-art deep CNN
architectures by training with a limited dataset without
over-fitting.

• Successfully adapted patch-based CNN classifiers to full
mammogram images for the localization of abnormalities
without segmentation.

II. LITERATURE REVIEW

We review computer-aided approaches to detecting and
classifying the two main abnormalities found in screening
mammography: micro-calcification (MC) and mass. Most ap-
proaches to detecting calcifications follow a similar procedure:
image enhancement, segmentation or extracting Region of
Interests (ROIs), feature computation and classification. Mass
detection algorithms first detect suspicious regions in a mam-
mogram and then classify it as mass or normal tissues.

MCs are tiny deposits of calcium that appear as bright
spots in mammograms. Filter banks were used to decompose
mammogram images followed by ROI selection and Bayesian
classifications [16] [12]. Pal et al. [18] introduced a multi-
stage system for detecting MCs in mammograms. They used a
back-propagation neural network to find candidate calcification
regions first, cleaned network output to remove thin elongated
structures and used a measure of local density for final
classification. Similarly, Harirchi et al. [8] applied a two-level
algorithm for the detection of MCs using diverse-Adaboost-
SVM. Six features (four wavelet plus two gray level features)
were computed for neural network to detect candidate MC
pixels. As a result, 25 features from candidate MCs were
extracted and further reduced with geometric linear discrim-
inant analysis (GLDA). The classifier was built with diverse
Adaboost SVM. Oliver et al. [17] extracted local features for
morphology of MCs and then used a learning approach to
select the most salient feature for a boosted classifier. Zhang
et al. [33] enhanced the MCs using well-designed filters and
then conducted subspace learning for feature selection. A twin
SVM (TWSVM) was used for classification.

A mass in mammogram is defined as a space-occupying
lesion seen in more than one projection [2]. The general
procedure for detecting mass is first to detect suspicious
regions, then extract shape and texture features, and finally

detect mass regions through classification or removing false
positive regions [15]. Petrosian et al. [20] used texture features
to distinguish mass and non-mass regions. Petrick et al. [19]
used an adaptive density-weighted contrast enhancement filter
to obtain potential masses and used Laplacian Gaussian for
edge detection. Morphological features were extracted for
classifying normal and mass ROIs. Cascio et al. [5] first
segmented the boundary of ROI using an edge-based approach
and then computed geometric and shape features. Neural
networks were trained to distinguish true mass from normal
regions.

While previous classifiers mostly used shallow neural net-
works, recent years witnessed great advancement on applying
deep learning to computer aided detection. Wang et al. [29]
introduced ChestX-ray8, a hospital-scale chest X-ray database,
and provided benchmarks on weakly-supervised classification
and localization of common thorax diseases. They applied
deep CNNs and added transition layers to produce heatmap
for localization. Following this work, Rajpurkar et al. [22] in-
troduced CheXNet, a 121-layer Dense Convolutional Network
(DenseNet) trained on the ChestX-ray 14 dataset, producing
radiologist-level pneumonia detection. Moreover, Rajpurkar et
al. [21] introduced MURA dataset for detecting radiologist-
level abnormality in musculo-skeletal radiographs.

Machine learning has also been widely applied to medical
measurements and imaging applications. Rosati et al. [23]
used multiparametric MRI along with a clustering procedure
based on self-organizing map (SOM) to improve the detection
of prostate cancer. Andria et al. [4] investigated the relation
between the radiation dose on patient and the resulting image
quality, through comparing the tomosynthesis performance
with 2D digital mammography. Roza et al. [24] presented
an artificial neural network (ANN) and feature extraction
methods to identify two types of arrhythmias in ECG signals.
Alkabawi et al. [3] proposed an approach for computer-aided
classification of multi-types of dementia using convolutional
neural networks. The proposed approach outperforms the state-
of-the-art CAD methods.

III. METHODOLOGY

Computer-aided mammography is a challenging problem
and cannot be treated as an image classification task. The rea-
son is that abnormalities within a whole image are located in
small regions. For example, a typical full mammogram with a
resolution of 3000x4600 (width and height in pixels) contains
an abnormality region of size only about 200x200 (pixels).
Training recent deep CNNs requires resizing full images to
224x224 (pixels) at input layer, making it difficult to train and
detect abnormalities. To deal with this challenge, we propose
training deep CNNs on cropped image patches (labelled ROIs)
and adapting them to full mammogram images.

Figure 1 illustrates the data-flow of our approach. With
training image patches from calcification and mass cases, a
binary classifier is trained with state-of-the-art deep CNN
architectures using transfer learning [31]. The pre-trained
CNNs are modified at output layers to have two output classes.



Fig. 1. Diagram of our approach.

The output layers are then fine-tuned while the first part of the
network is frozen.

The fine-tuned patch neural network is then used to localize
mammographic abnormalities in full-size mammograms. Tra-
ditional approaches used the classifier to scan the whole image
with a sliding window and therefore have a low efficiency [31].
In contrast, our approach enables localizing abnormalities in
one single forward pass. Feeding the full-size mammogram
image into the patch classifier and computing class activation
mapping [34] near the end of the output layers produces a
heatmap for the localization of abnormalities. The computation
of CAM is explained in more details at section III-D.

A. Data Selection

In mammography, there is a lack of standard evaluation data
and most CAD algorithms are evaluated on private dataset.
Most mammographic databases are not publicly available. This
poses a challenge to compare performance of methods or to
replicate prior results. The most commonly used databases are
the Mammographic Image Analysis Society (MIAS) database
[7] and the Digital Database for Screening Mammography
(DDSM) [10]. MIAS contains left and right breast images for
161 patients. There are 208 normal, 63 benign and 51 ma-
lignant images. It also includes radiologist’s ‘truth’-markings
on the locations of any abnormalities that may be present.
DDSM is the largest mammography dataset that is publicly
available. The database contains approximately 2,500 studies,
each includes two images of each breast, along with associated
patient information and image information. Images containing
suspicious areas have associated pixel-level “ground truth”
about the locations and types of suspicious regions. Sample
mammograms of a patient are shown in Figure 2.

Recently, Lee et al. [14] released an updated and standard-
ized version of the DDSM for the evaluation of CAD systems
in mammography. Their dataset, the CBIS-DDMS (Curated
Breast Imaging Subset of DDSM), includes decompressed

Fig. 2. Mammograms of a patient in DDSM dataset (different views from
left to right: left CC, left MLO, right CC and right MLO).

Fig. 3. Sample images of calcification patches in CBIS-DDSM.

images, data selection and curation by trained mammogra-
phers, updated mass segmentation and bounding boxes, and
pathologic diagnosis for training data. The dataset contains
753 calcification cases and 891 mass cases. Sample image
patches are shown in Figure 3 and 4.

We use image patches from CBIS-DDSM for classification
and test on full mammograms for localization. We merge the
training and testing dataset in CBIS-DDSM and conduct new
85/15 split for training and testing sets. The number of image
patches are listed in Table I.

TABLE I
SIZE OF TRAINING AND TESTING IMAGE PATCHES FOR CBIS-DDSM.

Abnormality Training Testing Overall
Calcification 1284 227 1511
Mass 1353 239 1592

B. Data Augmentation

To avoid over-fitting during training, we applied the follow-
ing data augmentation on the training data: random rotation
between zero and 360 degrees, random X and Y reflections. It

Fig. 4. Sample images of mass patches in CBIS-DDSM.



is based on our observation of the variations within the training
and testing dataset.

C. Architectures of Deep CNN

In visual computing, tremendous progress has been made in
object classification and recognition thanks to the availability
of large scale annotated datasets such as ImageNet Large
Scale Visual Recognition Competition (ILSVRC) [25]. The
ImageNet dataset contains over 15 million annotated images
from a total of over 22, 000 categories.

Recent years witnessed great performance advancement on
ILSVRC using deep CNNs. Comparing to traditional hand-
crafted image features, deep CNNs automatically extract fea-
tures from a large dataset for tasks they are trained for. In
this work, we adapt four of the best-performing models in
recent ImageNet challenges and compare their performance
on classifying calcification and mass in mammograms.

• AlexNet. In 2012, Krizhevsky et al. [13] entered Ima-
geNet ILSVRC with a deep CNN and achieved top-5
test error rate of 15.3%, compared to 26.2% achieved by
the second-best entry. The network was made up of 5
conv layers, max-pooling layers, dropout layers, and 3
fully connected layers. This work led to a series of deep
CNN variants in the following years which consistently
improved the state-of-the-art in the benchmark tasks.

• VGGNet. In 2014, Simonyan and Zisserman [26] intro-
duced a deeper 19-layer CNN and achieved top result in
the localization task of ImageNet ILSVRC. The network
used very small 3x3 convolutional filters and showed
significant improvement. This influential work indicated
that CNNs need to have a deep network of layers in order
for the hierarchical feature representations to work.

• GoogLeNet. In 2014, Szegedy et al. [27] introduced a
deeper CNN to ILSVRC and achieved top 5 error rate
of 6.7%. Instead of sequentially stacking layers, this
network was one of the first CNNs that used parallel
structures in its architecture (9 Inception modules with
over 100 layers in total).

• ResNet. In 2015, He et al. [9] introduced a new 152-layer
network architecture and set new records in ILSVRC.
ResNet achieved 3.57% error rate in the classification
task. The residual learning framework is 8 times deeper
than VGGNet but still has lower complexity.

All the deep CNN architectures were designed for a 1000-
class classification task. To adapt them to our task, the last
three layers were removed from each network. Three new
layers (fully connected layer, soft-max layer and classification
layer) were appended to the remaining structure of each
network. Higher learning rates were set for the newly added
fully connected layers so that the first part of each network
remains relatively unchanged during training and the newly
added layers get fine-tuned on our dataset. Five-fold cross
validation is used to train and test the robustness of each
architecture.

D. Class Activation Maps

Class Activation Mapping (CAM) is a technique for iden-
tifying regions in an image using a CNN for a specific class
[34]. In other words, CAM identifies image regions relevant to
a class. It allows re-using classifiers for localization purpose,
even when no training data on locations are available. It also
demonstrates that CNNs have a built-in attention capability.

Fig. 5. Class activation mapping for heatmap production.

Computing CAM for mammograms is explained in Figure
5. A deep CNN needs to be cut after the last convolution
layer and a global average pooling layer and a fully connected
layer are appended. The new model needs to be retrained
for learning the weights wi (i = 1, 2, ...n) at the output
layer. Within the four selected deep CNN architectures, ResNet
already has the required architecture and is therefore selected
for computing CAM.

A full mammogram is fed into the fine-tuned patch classifier
using ResNet. The feature maps from the output of the last
convolutional layer are denoted as fi (i = 1, 2, ...n). We can
identify the importance of the image regions by projecting
back the weights of the output layer onto the convolutional
feature maps [34] through:

CAM =

n∑
i=1

wifi (1)

The output CAM is then displayed for visualization and
verification.

IV. RESULTS

A. Comparison of Different Deep CNN Architectures

We set the following parameters for training each modified
deep CNN: Stochastic Gradient Descent with Momentum
(SGDM) as the optimization algorithm, batch size of 16, initial
learning rate as 1e − 4, and the learning rate factor for the
last fully connected layer as 20.0. Each network stops from
further training if the mean accuracy on the fifty most recent
batches reaches 99.5% or if the number of epochs reaches
maximum setting of 200. All the models are trained on a
workstation with an NVIDIA GeForce GTX TITAN X GPU
(one hour for AlexNet, eight hours for VGGNet, two hours
for GoogLeNet, and four hours for ResNet). The final size of
fine-tuned VGGNet is about 20 times that of GoogLeNet, with
in-between sizes for AlexNet and ResNet.

Running cross-validation on training and testing datasets
and computing mean accuracies across the five folds give the
final accuracy results in Table II. VGGNet achieves the highest
accuracy for classifying calcifications and GoogleNet receives



TABLE II
MEAN CLASSIFICATION ACCURACIES OF DEEP CNNS

Model Calcification Mass Overall Accuracy
AlexNet 88.81% 93.64% 91.23%
VGGNet 92.42% 92.64% 92.53%
GoogleNet 87.14% 95.06% 91.10%
ResNet 90.22% 93.39% 91.80%

the best performance for classifying masses. The highest
overall accuracy is also achieved by VGGNet at 92.53%.

B. Localization Results using Class Activation Mapping

We use the fine-tuned ResNet to compute class activation
mapping for localizing abnormalities. The selection is based
on the fact that ResNet is ready to be used for computing
CAM without further training. Without losing generality, we
use one full mammogram image from the calcification class,
feed it to ResNet and compute the CAM. The result is
shown in Figure 6. The heatmap on the right highlights the
location of calcifications found from the input mammogram.
The highlighted regions correspond to the calcifications within
the full mammogram (best viewed in color).

Fig. 6. Calcification localization result (left: full mammogram, right: class
activation map output.

Similarly a full mammogram from the mass class is fed into
the ResNet for computing the CAM. Results are demonstrated
in Figure 7. To add to the comparison, we also include the
ground-truth binary mask image provided by the training
dataset. The highlighted heatmap region corresponds to the
identified abnormality region labelled in the binary mask
image.

Fig. 7. Mass localization result (from left to right: full mammogram, class
activation map output, ground-truth binary mask image).

V. DISCUSSIONS

Because of the low-contrast and noise in mammogram
images, it is challenging to train classifiers on calcification
and mass cases. Deep neural networks has a limitation on the
size of input images (224x224 or 227x227 in pixels). Resizing
mammogram images to these sizes will inevitably reduce the
quality of images and may also lose the subtle details that
are needed for classification. Therefore we propose training
classifiers from cropped batch images in order to catch the
difference between calcification and mass cases, and apply
the trained deep CNN models onto full-size mammogram
images. Using a technique called class activation mapping,
we successfully reuse the patch classifier for the localization
of abnormalities in full mammogram images.

VI. CONCLUSION

We successfully apply deep convolutional neural networks
to localizing calcifications and masses in mammogram images
without training directly on the full images. This is achieved
by conducting the training on cropped image patches through
transfer learning and data augmentation. State-of-the-art deep
CNN architectures are trained and compared on their perfor-
mance of classifying the abnormalities. Moreover, we success-
fully adapt the patch classifier to localizing abnormalities in
full mammogram images through class activation mapping.

At the time of preparing this paper, we have found no
publications on using CBIS-DDSM; therefore, our results
provide a baseline for future studies on improving the per-
formance of detecting calcification and mass in computer-
aided mammography. Our future work includes extending the
approach to computer aided diagnosis (benign or malignant)
using mammograms.
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